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Introduction

All data requires expert evaluation before sets from different
conditions are combined. All reliability analysts strive to
gather as much data on a product as possible to make as real-
istic an assessment of the acceptability of the product as pos-
sible. Consequently, they often want to combine predicted,
test, and operating data for current, new, modified, and sim-
ilar products. Problems are encountered when non-homoge-
neous (heterogeneous) data are combined to represent a new
product. One of the important engineering tasks for
improved reliability is identifying design or product defects
prior to production and operation. Data analysis is one of the
methods used to determine the shortcomings of the process,
which is why accurate and proper data combinations are nec-
essary. The purpose of this START sheet is to introduce
some of the techniques and pitfalls of data combination.

Background

Combining similar data sets for the purpose of establishing
confidence intervals, estimating or forecasting values, mod-
eling data or establishing distributions (goodness of fit), is
very appealing. For as we all know, larger data sets provide
more information, allowing us to obtain better estimates and
more refined values. But this is only true if the information
is consistent, of good quality, and comes from similar popu-
lations.

Unfortunately, many analysts end up combining information
that resembles “apples and oranges,” for the data may be
similar only in appearance. For example, “field data” from a
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particular device may be combined with its laboratory data.
However, if these data are from different conditions and
developed from different levels of product maturity, combin-
ing these data may be counterproductive.

For, by combining such data, additional “noise” is introduced
into the data set. The extra noise increases the variance and
therefore, also increases the uncertainty and the size of the
confidence interval. In such cases, it is worse to combine the
data sets than to analyze them separately.

Consider the field to laboratory data problem previously
mentioned. What are the environmental conditions
involved? Are these data from a device that is operating in
the jungle, in the Arctic, in the dessert, near the sea, or dur-
ing winter or summer? Such environmental conditions will
undoubtedly affect the reliability and life of most devices,
due to the effects of heat, corrosion, contaminates, etc.

Then, consider the problem of operational stress. Under
what conditions was this device operating? Are these data
from training or normal missions, or rather from stressed and
unusual conditions such as combat? Certainly, these opera-
tional conditions will also affect the reliability and life of
most devices.

Also consider maintenance conditions. Under peacetime
conditions, preventive maintenance (PM) is performed on a
regular basis and a product may be out of use until a part is
obtained. Under combat conditions, a system will receive
PM as close as possible to schedule but certainly PM may be
deferred if combat so requires. And if parts are required,
they may be cannibalized from other systems. For the urgent
need for the system to operate overrides any other consider-
ations at such a time.

Implementation

To correctly combine several data sets, the analyst must per-
form an in-depth analysis of each set under consideration.
That is, using an Exploratory Data Analysis (EDA) approach
(introductory data analysis via tabular, graphical, and
descriptive statistics), one assesses the data characteristics.
This assessment establishes whether the population appears
symmetric and unimodal, or skewed. Then, prospective sta-
tistical distributions for the parent population are established
and estimates of the parameters are determined.
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Using the estimated parameters, we then establish theoretical
and qualitative differences and similarities between environ-
ments, operational profiles, product maturity, methods of testing
and other factors. These differences and similarities are identi-
fied via confidence intervals and hypothesis test for the parame-
ters, such as the mean, variance, median, etc. Finally, in-depth
statistical analyses on each data set (such as analysis of variance,
of covariance, regression modeling, goodness-of-fit tests, etc.)
are performed to establish and quantify any statistical difference
between the sets.

As a result of the aforementioned analyses, we combine only
those data sets that do not show large statistical differences
between associated distributions and their parameters, and where
other similarities can be established. For example, data sets from
different laboratory tests, that appear to come from the same dis-
tribution, such as a normal distribution, with the same mean and
variance, when the tests are performed on similar devices in
approximately equal time epochs, may be combined.

A summary of the implementation procedure is:

* Perform an EDA analysis [see References 1, 7, and 9]

» Perform graphical analysis [see Reference 8]

* Perform goodness of fit analysis [see Reference 11]

» Perform analysis of variance [see Reference 4]

» Perform regression analysis [see References 2 and 3]

* Quantify statistical differences [see References 5, 6, and 10]

In what follows, we present several numerical examples of the
described analysis methodology, including the types of statistical
procedures used to assess whether data sets are similar and can
be combined, or are different and cannot be combined. Then, we
discuss how different organizations have combined data in the
past, and the consequences of such data combining.

Similar Sets: Example on Combining Data

The first example is the analysis of a small data set (denoted
Ex3.dat) taken from the program RECIPE User’s Guide
[Reference 5]. The data consist of 11 tensile strength measure-
ments, taken at two different fixed levels of temperature (75°F
and -67°F) and from the same production batch. In order to
determine if these two subgroups differ, and must be analyzed
separately, or whether they are similar, and can be pooled togeth-
er, an exploratory data analysis (EDA) must be performed. If the
data can be combined as a single set, the analyst will have more
information and can thus obtain better results (such as tighter
confidence intervals).

The eleven values of this data set are shown in Table 1.

Table 1. Tensile Strength Observations (Two Sets)

Row Temp (F°) Strength
1 75 328.117
2 75 334.767
3 75 347.783
4 75 346.266
5 75 338.731
6 75 340.815
7 -67 343.586
8 -67 334.175
9 -67 348.661
10 -67 356.323
11 -67 344.152

The eleven tensile strength values constitute two well-defined
subgroups based on different temperatures. The analysis starts
by obtaining the descriptive statistics by subgroups, as well as
for the pooled data set. The values in Table 2 are determined.

Table 2. Analysis Statistics

Set (Temp)| N | Mean [Median| StDev | Min | Max | Q1 Q3

ex3 (75) 6 1339.41 339.77 | 7.33 |328.12|347.78|333.10|346.65

ex3 (-67) | 5|345.38] 344.15 | 8.07 |334.17|356.32[338.88(352.49

ex3 (tot) 111342.13] 343.59 | 7.92 |328.12|356.32]|334.77|347.78

where temperature is in degrees Fahrenheit, N is the sample size,
STDEYV is the standard deviation, MIN and MAX are the mini-
mum and maximum values in the sample, and Q1 and Q3 are the
first and third quartiles (signaling the 25" and 75® sample per-
centiles).

Proceeding with the EDA, a Box and Whisker plot of the data,
by temperature and with combined data, is developed and pre-
sented in Figure 1.
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Figure 1. Boxplot of the Data

These box plots suggest that there may be a difference between
the group measurements, when subdivided by temperature. To
verify this, we obtain the scatter plot of the data, which is shown
in Figure 2.
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Figure 2. Scatter Plot of the Data

The scatter plot also suggests that tensile strength means may
differ, when considered by temperature. However, variation
within the two groups (variance) seems homogeneous. These
two issues need to be investigated further, analytically. This
investigation is performed by assessing whether or not the
underlying populations follow a normal distribution.

Analyzing both subgroups (and the combined data) using the
Anderson-Darling (AD) GoF tests [Reference 11] we determine
if both groups are assumed normal. If they are, and with the same
mean and variance, then the two sets can be combined. And their
combination data can then be analyzed as a single group. Results
of these analyses are presented in Figures 3, 4, and 5.
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Figure 3. GoF Test for I' Group
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Figure 4. GoF Test for 2" Group
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Figure 5. GoF Test for Combined Group

Both test p-values, obtained from the AD GoF tests, resulted in
calculations greater than o = 0.05. Therefore, both temperature
groups can be assumed normally distributed. Let’s verify that
their combination can also be assumed normally distributed.
The results obtained from the AD Goodness of Fit test are sum-
marized as follows:

Data Set p-value Decision
75°F (First Group) 0.83 normality assumed
-67°F (Second Group) 0.70 normality assumed
Combined Temp data set 0.93 normality assumed

Since the p-value is higher than a = 0.05, we cannot reject nor-
mality for the combined data set.

Next, the means of the two small size normal samples are com-
pared. First, the Fisher F-test is used to compare the two vari-
ances and then the Student t-test is used to compare the means. If
neither of these two mentioned tests can reject the hypotheses of
equality (i.e., means and variances of the two groups are equal),
then the data can be pooled together. And we can safely assume
that both samples come from normal populations, with the same
mean and the same variance. On the other hand, if any group data
fails any of these two tests, we must analyze them separately.

First, test the hypothesis that both group temperature variances
are equal (0; = 0,). This is performed by using the F test statis-
tic, which is defined as the ratio of both sample variances. The
two sample variances: S1° = (7.33)* = 53.7289 and S2* = (8.08)*
= 65.1249, are obtained from the table of descriptive statistics.
For practical reasons, we always place the largest variance in the
numerator:

F=1S2>/81°=65.12/53.72 = 1.21

Fisher’s test requires the upper critical value F(nl =5,n2 =6) =
5.99 (where nl and n2 are the corresponding sample sizes, and
determine the F test degrees of freedom). They can be found in
any standard F-Table. The F test statistic result shown above (F
=1.21) is smaller than the upper critical value (5.99). Hence, we




cannot reject the assumption of equal variances, for a signifi-
cance level (or test error) o = 0.05. Therefore, we consider that
both temperature groups have the same variance.

Next, the Student t-test is used to assess the equality of the two
group means (i.e., i = Wp). This test is applicable when both
samples are small. In our example, the samples come from inde-
pendent and normal populations having equal variances, the two
sample averages (or means) are X = 339.41 and y = 345.38, the
sample sizes are n; = 6 and n, = 5 and the “pooled” sample stan-
dard deviation (Spe01) is 7.67.

Therefore, the Student t-test statistic is as follows.

- (&-5)- (- ) _ (439.4-345.4)-(0) _ 120

Spool\/1+1 7.67x 4/ (6)+ (U3)
no Ny

S = (0 -1)s +(ny-1)83 _
pool — -

ny+np-2

\/(5 *(7.332) +4*(8.072))/9 =7.67

The two sample Student t-test for the comparison of the two tem-
perature means (formula shown earlier), yields a statistic value
of t=-1.29. Such a t-test result has a p-value (probability of erro-
neous rejection) of 0.23, larger than the error level a = 0.05.

Since the test p-value is larger than a = 0.05, we cannot reject
the null hypothesis that the group means are equal (U = Wy).
Since the two temperature groups are normally distributed, with
the same mean and variance, we can safely assume that both
samples come from the same normal population and can be
pooled. Any performance measure of interest can now be
obtained, assuming that the pooled data come from the normal
population, with parameters = 342.12, 0 = 7.92.

Dissimilar Sets: Example on Not Combining

Data

Data set Ex5.dat is taken from the RECIPE Statistical Software
[Reference 5] Program Users Guide (and discussed in Section
8.3.7.9 of [Reference 6]). The data set consists of 15 tensile
strength observations, from five sequentially produced batches
from two different manufacturers as shown in Table 3.

The first step is to determine whether the Ex5.dat set is homoge-
neous (same kind), so that we can use all of it to obtain measures
of central tendency, dispersion, and other parameters that char-
acterize it. The underlying distribution and its parameters need
to be assessed to ascertain whether there are outliers in the com-
bined data set.

Table 3. Tensile Strength (two sets, five subsets)

Row Manufacture Batch Strength
1 1 1 75.8
2 1 1 78.4
3 1 1 82.0
4 1 2 68.8
5 1 2 70.9
6 1 2 73.5
7 1 3 74.5
8 1 3 74.8
9 1 3 78.8
10 2 4 81.3
11 2 4 87.7
12 2 4 89.0
13 2 5 88.2
14 2 5 91.2
15 2 5 94.2

If data sets are homogeneous, we can and want to combine them.
If data are heterogencous (that is, vary by manufacturer, by
batch, or by both), then combination is ill-advised. If such vari-
ation exists, we also want to know the reasons for this variation
(i.e., if they are caused by a time trend or by some factor such as
the manufacturer). This additional information can be used to
validate or forecast a tensile value. The descriptive statistics for
the data are shown in Table 4.

Table 4. Descriptive Statistics for Strength Data

N | Mean | Median | STDEV | Min | Max Q1 Q3
15 | 80.61 78.80 7.860 | 68.80 | 94.20 | 74.50 |88.20

Note: N is the sample size of the data set, STDEV is the standard devi-
ation, Min and Max are the minimum and maximum values in the sam-
ple, and Q1 and Q3 are the first and third quartiles (signaling the 25"
and 75" percentiles of the population).

The next step is to plot the data in various ways (pooled, by indi-
vidual groups, etc.) to obtain a first diagnostic about how the
data sets are similar or about how they differ. This is done in the
Box and Whiskers plot (known for short as boxplot) as shown in
Figure 6 for the combined data.
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Figure 6. Box Plot of the Combined Data

The boxplot of the combined data set, Figure 6, shows, as a
“box” the values comprising the centered 50% of the data
(between Q1 and Q3). The “plus” sign inside this box is the
sample median and the lines (whiskers) cover the lower and
upper 25%, to the minimum and maximum sample values,
respectively. This boxplot suggests a flat and symmetric distri-
bution, with heavy tails. The median and mean are close and the
data are spread out, as shown by the extended upper/lower quar-
tiles. Redoing the boxplot by manufacturer subset, as shown in
Figure 7, some reasons for the data variability become apparent.
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Figure 7. Box Plot by Manufacturer

The data descriptive statistics, obtained by manufacturer’s
groups are shown in Table 5.

Table 5. Descriptive Statistics for Strength Data
Manuf.| N | Mean [ Median| StDev | Min | Max | Q1 | Q3
1 9 7528 | 74.80 4.07 168.80]82.00(72.20]78.60
2 6 | 88.60 | 88.60 4.30 |81.30]94.20(86.10]91.95

The boxplots and the descriptive statistics suggest that there are
differences in the tensile strengths of the two (manufacturers)
groups, which is also clearly apparent in the scatter plot shown in
Figure 8, as manufacturer two has higher tensile strength values.
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Figure 8. Scatter Plot for Strength Data by Manufacturer

Exploring further, the data from each manufacturer was broken
down by batches. This evaluation, shown in Figure 9, confirms
that a difference exists between the two manufacturers. In addition,
there are batch differences within the two manufacturers units. It
is apparent from Figure 9 that the batches differ by manufacturer.
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Figure 9. Box Plots by Subgroups

An Anderson-Darling (AD) Goodness of Fit (GoF) test for
Normality [See Reference 11] was performed for the entire data
set. Results indicate an AD = 0.33 with a p-value = 0.47, much
higher than the a required to reject normality as a plausible data
distribution. The reject values are generally below o = 0.05.
The boxplots do not suggest the presence of outliers. An AD
GoF test for each manufacturer was performed, obtaining AD
values of 0.15 and 0.28 respectively, with p-values of 0.93 and
0.50. With such results, we cannot reject normality, a required
distribution for the implementation of comparison between
groups, via two-sample t-tests and Analysis of Variance
(ANOVA).

First, the two device manufacturer data sets are compared via a
two-sample t-test. The two group variances are very similar as
shown by the following descriptive statistics and hence, are
assumed equal.

Manuf. N Mean StDev | SE Mean
1 9 75.28 4.07 1.4
2 6 88.60 4.30 1.8

The t-test yields a p-value = 0.00 which is less than a = 0.05 and
the 95% confidence interval (-18.1, -8.6) for the differences
between the two manufacturers’ means (i.e., manuf-1 and
manuf-2). These results show that the second manufacturer’s
material has a tensile strength mean that is between 8.6 and 18.1
units stronger than that of the first, with 95% confidence.

Within each of the two manufacturers, graphical analysis shows
some differences between batches. Exploring them, analytical-
ly, via ANOVA, for manufacturer 1, there is a statistical differ-
ence (p-value = 0.032, less than 0.05) between batches 1 & 2. It
is quite apparent in the ANOVA graph, Figure 10.

Source DF SS MS F P
bat-1 2 90.74 45.37 6.48 0.032
Error 6 42.00 7.00 -- --
Total 8 132.74 - -- --

Individual 95% CIs for Mean Based on Pooled StDev

Level N Mean StDev
1 3 78.733 3.113
2 3 71.067 2.354
3 3 76.033 2.401
POOLED STDEV = 3.605

|
Level 1 €-------- oo mm e o )
Level 2 (------ O )
Level 3 (- gommmm - )
i i '. |
70.0 75.0 80.0 85.0

Figure 10. ANOVA Results




For manufacturer 2, however, the two batches appear to come
from the same population (p-value = 0.152 larger than 0.05).
This result, see Figure 11, suggests that their production process
is more homogeneous (controlled) than that of manufacturer 1.
Further investigation with more batches is recommended.

Source DF SS MS F p
bat-2 1 40.6 40.6 3.12 0.152
Error 4 52.0 13.0 - -
Total 5 92.5 - - -

We now plot the sequentially obtained batch means, versus time
(Figure 12).

Individual 95% CIs for Mean Based on Pooled StDev

Level N Mean StDev
4 3 86.000 4.122
5 3 91.200 3.000
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Figure 11. ANOVA Within Manufacturer

The scatter plots show an increasing trend among the sequential
batches, as time increases. We perform a regression analysis on
the time series of the combined data set. Statistically significant
results (i.e., small p-values) are presented in Table 3. The regres-
sion equation is: strength = 68.6 + 3.99 batch.

Regression analysis shows an effect of time on the mean strength
of the batch. The index of fit is R* = 55%. The regression model
explains over half of the data variation. The regression tests are
highly significant (p-values are practically zero) and therefore

Strength

88.0

80.0

72.0

suggest that the data sets are not homogeneous. Again, there are
two important caveats to be made. First, we must examine the
residual plot, to assess that all regression model assumptions are
met. But second and more importantly, we need to ask our-
selves: Do these results have a sound engineering basis? Do
they make engineering sense?

Table 3. Regression Analysis

Predictor Coef StDev t-ratio ]
Constant 68.647 3.306 20.77 0.000
batch 3.9867 0.9967 4.00 0.002
s =5.459 R-sq=55.2% R-sq(adj) = 51.7%

Analysis of Variance
Source DF SS MS F P
Regression 1 476.81 476.81 16.00 0.002
Error 13 387.40 29.80
Total 14 864.21

In conclusion, the data sets do not appear homogeneous and
should not be analyzed in a combined fashion, but separately by
manufacturer. Even more, importantly the analysis shows that
there are some differences even within each manufacturer.

Example of Field to Predicted Data

We now discuss, using some specific examples, several impor-
tant issues regarding the field operating data and reliability pre-
diction models. These issues are particularly relevant when
dealing with reliability prediction, test, and life data.

For example, in the late 1980s, a study was conducted that com-
pared predicted and field MTBFs in an attempt to quantify the
uncertainty associated with the mentioned reliability predictions.
This study was a “snapshot” in which both predicted and field
MTBEF system data was analyzed.

Because of the fragmented nature of the part and environmental
data used in this study, and the fact that it was often necessary to
interpolate or extrapolate from the available data when develop-
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Figure 12. Sequentially Obtained Batch Means




ing new models, statistical confidence intervals associated with
the overall (combined) model results are greatly compromised.
In addition to the variability associated with developing the mod-
els, there is human variability in making prediction and judg-
ment assumptions about including or excluding of field failures,
and failure definitions. As a result, the validity of confidence
interval assumptions and, therefore, of its confidence levels can
be seriously questioned.

The original data used to develop the confidence intervals was
based on approximately 200 reliability predictions performed
during the 1970s and 1980s and documented in a study spon-
sored by Rome Air Development Center (RADC) entitled
“Reliability and Maintainability Operational Parameter
Translation II,” RADC-TR-89-299. It should also be remem-
bered that the predictions performed on these 200 systems were
developed a number of years ago, by a wide range of individu-
als, under many different assumptions. In addition, at that time,
operating modes and other factors may have also been very dif-
ferent than what they are today, which is why combining data
sets is so critical.

Field MTBFs used in the study introduce more variability with a
wide range of operating hours, failure counts and maintenance
policies for each system. Therefore, the study results could very
well be different if reconstructed today using a statistical analy-
sis approach as presented in this report. It serves only to provide
a notion of the variability possible across a wide range of sys-
tems, companies, individuals and field maintenance policies that
need to be analyzed. The results could be much better, say, if a
single experienced reliability engineer were applying a standard
prediction tool over a long period of time, and there was like
consistency in field failure counting practices. But such infor-
mation is not available.

Part failure models in MIL-HDBK-217, Telcordia and PRISM*
and other reliability prediction techniques are based on part data
from numerous sources, environments and time epochs.
Complete models are never developed under a single study con-
tract, and the failure data do not come from a single source. For
example, all MIL-HDBK-217 environmental factors were devel-
oped under study efforts separate from the one in which the part
failure models were developed. Statistical studies for combining
these data were never performed, so incompatibilities in data sets
were never identified.

In addition, adding vendor and field failure rate data to the com-
bination, results in a mixed prediction that may or may not rep-
resent the “new” design. Outside data sources are usually from
units or components that have been previously developed and
can be similar to the new but may have different technologies
and, hence, have an indeterminable correlation to the “new”
design.

Concerns for Further Studies

Several important caveats regarding combining data from sever-
al sources to develop statistical models, in general, and regres-
sion models, in particular, were discussed. The two most impor-
tant caveats are that (1) data should only be combined when the
engineering and statistical analysis support such combinations,
and that (2) the statistical model should always follow reality,
not the other way around. If care is not taken, an engineer might
end up modeling the data and not the problem.

Also, several statistical procedures (t and F tests, AD GoF test,
regression and ANOVA) have been described in some detail, and
implemented, in the analysis of the illustrative data. Some pro-
cedures (e.g., AD) are discussed in-depth in other RAC START
sheets [11]. Others (e.g., t and F tests, ANOVA and regression)
have been referenced in other bibliographic sources, many of
them developed by and available at the RAC [7, 8, 9, and 10]. In
addition, these topics will be, in the near future, also discussed in
detail in other RAC START sheets.
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from Worcester Polytechnic Institute. He is a member of IEEE.

Other START Sheets Available

Many Selected Topics in Assurance Related Technologies
(START) sheets have been published on subjects of interest in
reliability, maintainability, quality, and supportability. START
sheets are available on-line in their entirety at <http:/rac.
alionscience.com/rac/jsp/start/startsheet.jsp>.

For further information on RAC START Sheets contact the:

Reliability Analysis Center
201 Mill Street

Rome, NY 13440-6916

Toll Free: (888) RAC-USER
Fax: (315) 337-9932

or visit our web site at:

<http://rac.alionscience.com> = e

About the Reliability Analysis Center

The Reliability Analysis Center is a world-wide focal point for efforts to improve the reliability, maintainability, supportability
and quality of manufactured components and systems. To this end, RAC collects, analyzes, archives in computerized databas-
es, and publishes data concerning the quality and reliability of equipments and systems, as well as the microcircuit, discrete
semiconductor, electronics, and electromechanical and mechanical components that comprise them. RAC also evaluates and
publishes information on engineering techniques and methods. Information is distributed through data compilations, applica-
tion guides, data products and programs on computer media, public and private training courses, and consulting services. Alion,
and its predecessor company IIT Research Institute, have operated the RAC continuously since its creation in 1968.




