Environmental Effects on Mechanical Design

<table>
<thead>
<tr>
<th>Environment</th>
<th>Principal Effects</th>
<th>Corrective Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature</td>
<td>• Insulation deteriorates
• Aging (oxidation)
• Softening of materials
• Evaporation/drying
 - Outgassing
 - Reduced viscosity (lubricants)</td>
<td>• Minimize it (thermal design and cooling approach)
• Segregate it (mechanical insulation)
• Remove it (eliminate heat source in design)</td>
<td>Heat sources include electronic self-heating, friction (mechanical assembly), and ambient temperature.</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>• Materials become brittle
• Increased viscosity (lubricants)
• Ice formation or condensation
• High heat loss
• Reduced chemical reactions
• Stiffening of shock mounts</td>
<td>• Introduce heating
• Improve mechanical insulation
• Use better materials (parameter/temperature matching)</td>
<td>Low temperatures are typically experienced in uncontrolled environments (temperature, altitude) or inadequately insulated equipment.</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>• Materials deformation
• Thermal/mechanical fatigue
• Creep resulting from a confined constant load
• Stress relaxation
• Ductile and brittle fractures
• Buckling</td>
<td>• Minimize or eliminate the mismatch of thermal expansion coefficients between adjacent materials (materials selection)
• Use appropriate mechanical design tolerances</td>
<td>Compatibility of the coefficient of thermal expansion (CTE) of adjacent materials determines susceptibility to thermo-mechanical failure modes.</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>• Rapid expansion and contraction of equipment can cause:
 - Cracks
 - Seal failures
 - Ruptures
 - Parameter changes</td>
<td>• Minimize or eliminate CTE mismatches in adjacent materials
• Use appropriate mechanical design tolerances</td>
<td>High temperature gradients can be destructive, and typically result from transition of equipment between two environmental extremes.</td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>• Interference between parts
• Permanent deformation due to overstress</td>
<td>• Use stronger materials (as stiff and light as possible)
• Use shock mounts
• Superstructure should be stiffer than supporting structure
• Use stiff supporting structure if system natural frequency is >35 Hz
• Transmit, rather than absorb, energy</td>
<td>The sudden application of force, measured in G’s of acceleration and milliseconds duration. Can be caused by handling, transportation, gunfire, explosion and/or propulsion.</td>
</tr>
<tr>
<td>Vibration</td>
<td>• Intermittent electrical contacts
• Touching/shorting of electrical parts
• Wire chaffing
• Loosening of hardware
• Component/material fatigue</td>
<td>• Stiffen mechanical structure
• Reduce moments of inertia
• Control resonant frequencies (raise or lower to reduce coincidence with equipment natural frequency)</td>
<td>Vibration isolation is the controlled mismatch of a product’s resonant and natural frequencies. It does not usually provide shock isolation. Shock mounts can increase vibration damage.</td>
</tr>
<tr>
<td>Humidity/Moisture</td>
<td>• Loss of electrical insulation (dielectric strength)
• Destruction of organic insulation (absorption and expansion)
• Corrosion of materials
• Acceleration of chemical action/reaction
• Aids fungus growth</td>
<td>• Use adequate seals
• Select moisture-resistant parts
• Use conformal coatings</td>
<td>Moisture coats material surfaces, absorbs sulfur dioxide (SO₂) or other corrosive agents, and attacks material surfaces.</td>
</tr>
</tbody>
</table>
Environmental Effects on Mechanical Design (Cont’d)

<table>
<thead>
<tr>
<th>Environment</th>
<th>Principal Effects</th>
<th>Corrective Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| High Altitude/Vacuum | • Induced damage due to pressure differential within a product
• Evaporation/drying due to outgassing
• Forms corona (arcing)
• Generates ozone
• Reduces electrical breakdown voltages
• Chemical changes within organic materials (primarily rubber) | • Increase mechanical strength or improve venting
• Pressurize equipment
• Improve heat transfer
• Minimize use of organic materials
• Properly insulate high voltage components | The primary objectives are to design equipment that can be stored and operated at high ground evaluation points and can survive a rapid decompression without damage to an aircraft or its personnel. |
| Sand and Dust | • Failure of lubricants
• Erosion and wear of machine/bearing surfaces
• Jamming of threaded devices
• Clogging of orifices
• Lenses and windows become etched, effecting signal transmission and/or operator visibility
• Acids are formed if moisture is absorbed
• Collects at high static potential points, forming ionization paths | • Use air filtering
• Use hermetic seals
• Use protective enclosures/coatings | Equipment should resist the penetration of small-particle sand into cracks, crevices, bearings and joints. Equipment should withstand blowing sand (149 to 850mm particle size) without degradation of its performance, effectiveness, reliability or maintainability. |
| Salt Spray/Fog | • Combines with water to form acidic/alkaline solutions
• Accelerates corrosion of metals
• Increases galvanic action of metals | • Use protective coatings
• Avoid use of dissimilar metals
• Hermetic seals | Salt is a highly pervasive chemical compound found in the oceans, the atmosphere, ground surfaces, lakes and rivers. All equipment may be exposed to some form of salt during its life cycle. |
| Electromagnetic Radiation | • Equipment may generate electromagnetic interference affecting other equipment (radiated electromagnetic interference (EMI))
• Equipment performance may be susceptible to electromagnetic interference generated from another source (EMI susceptibility) | • Use EMI shielding and decoupling techniques, i.e., Faraday cage
• Use proper grounding and bonding techniques (avoid ground loops)
• Use proper signal filtering, power isolation and conditioners, and frequency allocation and control techniques | Radiation includes radiated and conducted emissions, and can include interference between two equipments, or within one equipment. Radiation can be natural (e.g., lightning) or man-made. |

Copyright © 2001 Alion Science and Technology. All rights reserved.

Source:

For More Information:
- RAC Publication, NPS, *Mechanical Applications in Reliability Engineering*.

2